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Abstract
Ghost condensates of dimension 2 in SU(N) Yang–Mills theory quantized in
the maximal Abelian gauge are discussed. These condensates turn out to be
related to the dynamical breaking of the SL(2, R) symmetry present in this
gauge.

PACS numbers: 12.38.Aw, 11.15.Tk

1. Introduction

Nowadays a great deal of effort is being undertaken to study condensates of dimension two
in order to improve our knowledge about the dynamics of Yang–Mills theories in the infrared
regime. For instance, the gauge condensate 〈A2〉 has been argued to be suitable for detecting
the presence of topological structures such as monopoles [1]. An indication that the vacuum
of pure Yang–Mills theory favours a nonvanishing value of this condensate has been achieved
in [2] by an explicit two-loop computation of the effective potential in the Landau gauge. A
discussion of 〈A2〉 in the context of the operator product expansion and its relevance for lattice
QCD may be found in [3]. Further investigations using a recently proposed decomposition
[4] of the gauge field have been reported [5].

An interesting mechanism providing a condensate of dimension two has also been
proposed [6–8] in the maximal Abelian gauge (MAG). This gauge, introduced by [9, 10], has
given evidence for monopole condensation as well as for the Abelian dominance hypothesis,
which are the key ingredients for the so-called dual superconductivity [11, 9] mechanism
of QCD confinement. An important point to be noted here is that the MAG condition is
nonlinear. As a consequence, a quartic ghost interaction term must be necessarily included for
renormalizability [12, 13]. As in the case of an attractive four-fermion interaction [14], this
term gives rise to an effective potential resulting in a gap equation whose nontrivial solution
at weak coupling yields a nonvanishing off-diagonal ghost–antighost condensate 〈c̄c〉 of
dimension two. The physical relevance of this ghost condensate lies in the fact that it is believed
to be part of a more general two-dimensional condensate, namely

(
1
2

〈
Aa

µAa
µ

〉 − ξ〈c̄aca〉), where
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ξ denotes the gauge parameter of the MAG and the index a runs over all the off-diagonal
generators. This condensate has been introduced due to its BRST invariance [15] and it is
expected to provide effective masses for both off-diagonal gauge and ghost fields [15–17].

Besides the computation of the effective potential, the problem of identifying the symmetry
which is dynamically broken by the ghost condensation has also begun to be faced [6–8]. In
the case of SU(2), the ghost condensation has been interpreted as a breaking of a global
SL(2, R) symmetry [6, 7] displayed by Yang–Mills in the MAG. In [8] the one-loop effective
potential for the ghost condensation in the case of SU(3) has been computed. Recently, the
authors [18] have been able to establish the existence of SL(2, R) in the MAG, for the general
case of SU(N).

The aim of the present work is to continue the investigation on the ghost condensation
and their relationship with the dynamical symmetry breaking of SL(2, R), for the general case
of SU(N). As already observed [18], the breaking of SL(2, R) can actually occur in different
channels, according to which generators are broken. More specifically, the three generators of
SL(2, R), namely δ, δ̄ and δFP , are known [19] to obey the algebra [δ, δ̄] = δFP , where δFP

denotes the ghost number.
The condensate 〈c̄c〉 analysed in [6–8] corresponds to the breaking of the generators δ, δ̄.

In this paper we shall analyse the other off-diagonal condensates 〈cc〉 and 〈c̄c̄〉 which are related
to the breaking of (δ, δFP ) and (δ̄, δFP ), respectively [18]. We also remark that the existence
of different channels for the ghost condensation has an analogy in superconductivity, known as
the BCS1 versus the Overhauser2 effect [20]. In the present case the Faddeev–Popov charged
condensates 〈cc〉 and 〈c̄c̄〉 would correspond to the BCS channel, while 〈c̄c〉 corresponds to
the Overhauser channel. Therefore, the possibility of describing the ghost condensation in
the case of SU(N) as a dynamical symmetry breaking of the ghost number seems to be rather
natural.

The paper is organized as follows. In section 2 a brief review of the quantization of
SU(N) Yang–Mills in the MAG is provided. In section 3 the dynamical symmetry breaking
of the ghost number in the case of SU(2) is discussed in detail. Section 4 is devoted to the
generalization to SU(N), analysing, in particular, the case of SU(3). In the last section the
conclusions are presented.

2. Yang–Mills theory in the MAG

Let Aµ be the Lie algebra valued connection for the gauge group SU(N), whose generators
T A, [T A, T B ] = f ABCT C , are chosen to be anti-Hermitian and to obey the orthonormality
condition Tr(T AT B) = δAB , with A,B,C = 1, . . . , (N2 − 1). Following [9, 10], we
decompose the gauge field into its off-diagonal and diagonal parts, namely

Aµ = AA
µT A = Aa

µT a + Ai
µT i (2.1)

where the index i labels the N − 1 generators T i of the Cartan subalgebra. The remaining
N(N − 1) off-diagonal generators T a will be labelled by the index a. Accordingly, the field
strength decomposes as

Fµν = FA
µνT

A = Fa
µνT

a + F i
µνT

i (2.2)

with the off-diagonal and diagonal parts given respectively by

Fa
µν = Dab

µ Ab
ν − Dab

ν Ab
µ + gf abcAb

µAc
ν

F i
µν = ∂µAi

ν − ∂νA
i
µ + gf abiAa

µAb
ν

(2.3)

1 Particle–particle and hole–hole pairing.
2 Particle–hole pairing.
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where the covariant derivative Dab
µ is defined with respect to the diagonal components Ai

µ

Dab
µ ≡ ∂µδab − gf abiAi

µ. (2.4)

For the Yang–Mills action one obtains

SYM = −1

4

∫
d4x

(
Fa

µνF
aµν + F i

µνF
iµν

)
. (2.5)

The so-called MAG gauge condition [9, 10] amounts to fixing the value of the covariant
derivative

(
Dab

µ Abµ
)

of the off-diagonal components. However, this condition being nonlinear,
a quartic ghost self-interaction term is required. Following [6–8], the corresponding gauge
fixing term turns out to be

SMAG = s

∫
d4x

(
c̄a

(
Dab

µ Abµ +
ξ

2
ba

)
− ξ

2
gf abi c̄a c̄bci − ξ

4
gf abccac̄bc̄c

)
(2.6)

where ξ is the gauge parameter and s denotes the nilpotent BRST operator acting as

sAa
µ = −(

Dab
µ cb + gf abcAb

µcc + gf abiAb
µci

)
sAi

µ = −(
∂µci + gf iabAa

µcb
)

sca = gf abicbci +
g

2
f abccbcc sci = g

2
f iabcacb

sc̄a = ba sc̄i = bi

sba = 0 sbi = 0.

(2.7)

Here ca, ci are the off-diagonal and the diagonal components of the Faddeev–Popov ghost
field, while c̄a, ba are the off-diagonal antighost and Lagrange multiplier. We also observe that
the BRST transformations (2.7) have been obtained by their standard form upon projection
on the off-diagonal and diagonal components of the fields. Concerning the gauge parameters,
we remark that, in general, the MAG condition allows for the introduction of two independent
parameters [12], while in equation (2.6) a unique gauge parameter ξ has been introduced.
However, the resulting theory turns out to be renormalizable due to the existence of a further
Ward identity which ensures the stability under radiative corrections [13]. Expression (2.6) is
easily worked out and yields

SMAG =
∫

d4x

(
ba

(
Dab

µ Abµ +
ξ

2
ba

)
+ c̄aDab

µ Dµbccc + gc̄af abi
(
Dbc

µ Acµ
)
ci

+ gc̄aDab
µ (f bcdAcµcd) − g2f abif cdi c̄acdAb

µAcµ − ξgf abibac̄bci

− ξ

2
gf abcbac̄bcc − ξ

4
g2f abif cdi c̄a c̄bcccd − ξ

4
g2f abcf adi c̄bc̄ccdci

− ξ

8
g2f abcf adec̄bc̄ccdce

)
. (2.8)

Note also that for positive values of ξ the quartic ghost interaction is attractive. As has been
shown in [6–8], the formation of ghost condensates at weak coupling is thus favoured.

The MAG condition allows for a residual local U(1)N−1 invariance with respect to the
diagonal subgroup, which has to be fixed by means of a suitable further gauge condition on
the diagonal components Ai

µ of the gauge field. Adopting a covariant Landau condition, the
remaining gauge fixing term is given by

Sdiag = s

∫
d4x c̄i∂µAiµ =

∫
d4x

(
bi∂µAiµ + c̄i∂µ

(
∂µci + gf iabAa

µcb
))

(2.9)
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where c̄i , bi are the diagonal antighost and Lagrange multiplier. As in the familiar case of
QED, the diagonal gauge fixing gives rise to a linearly broken U(1)N−1 Ward identity [13]
which takes the form

W iS = −∂2bi W i = ∂µ

δ

δAi
µ

+ gf abi

(
Aa

µ

δ

δAb
µ

+ ca δ

δcb
+ ba δ

δbb
+ c̄a δ

δc̄b

)
(2.10)

where S = SYM + SMAG + Sdiag. From (2.10) one sees that the diagonal components Ai
µ of the

gauge field play the role of massless photons, while all off-diagonal components behave as
charged matter fields.

3. Dynamical ghost number symmetry breaking: the case of SU (2)

In this section we discuss the dynamical mechanism which, due to the quartic ghost interaction
term, leads to the existence of the off-diagonal condensates 〈cc〉 and 〈c̄c̄〉. These condensates
will realize a dynamical breaking of the ghost number symmetry. In the case of SU(2) the
gauge fixing term (2.8) simplifies to

SMAG =
∫

d4x

(
ba

(
Dab

µ Abµ +
ξ

2
ba

)
+ c̄aDab

µ Dµbccc + gc̄aεab
(
Dbc

µ Acµ
)
c

− g2εabεcd c̄acdAb
µAcµ − ξgεabbac̄bc − ξ

4
g2εabεcd c̄a c̄bcccd

)
(3.11)

where εab = εab3 (a, b = 1, 2) are the off-diagonal components of the SU(2) structure
constants εABC, c = c3 is the diagonal ghost field, and Dab

µ = (∂µδab − gεabAµ) is the
covariant derivative, with Aµ = A3

µ denoting the diagonal component of the gauge connection.
In order to deal with the quartic ghost interaction we linearize it by introducing a pair of real3

auxiliary Hubbard–Stratonovich fields (ϕ, ϕ̄), so that

− ξ

4
g2εabεcd c̄a c̄bcccd −→ − 1

ξg2
ϕ̄ϕ +

1

2
ϕεabc̄a c̄b − 1

2
ϕ̄εabcacb. (3.12)

The invariance of the gauge fixed action S under the BRST transformation is guaranteed by
demanding that

sϕ̄ = ξg2εabbac̄b sϕ = 0. (3.13)

From expression (3.12) one sees that the requirement of positivity of the gauge fixing parameter,
i.e. ξ > 0, will ensure that the effective potential Veff(ϕ, ϕ̄) for the Hubbard–Stratonovich
fields (ϕ, ϕ̄) will be bounded from below, a necessary physical requirement. Moreover, in the
following we shall see that a nontrivial vacuum configuration, corresponding to a nonvanishing
ghost condensation, will be obtained by setting ξ = 22/3.

According to our present aim, the auxiliary fields (ϕ, ϕ̄) carry a nonvanishing Faddeev–
Popov charge, as can be seen from table 1 where the dimension and the ghost number of all
fields are displayed.

Therefore, a nonvanishing vacuum expectation value for (ϕ, ϕ̄) will have the meaning
of a breaking of the ghost number generator of SL(2, R). In order to analyse whether a
nontrivial vacuum for (ϕ, ϕ̄) is selected, we follow the Coleman–Weinberg procedure [22]
and evaluate the one-loop effective potential Veff(ϕ, ϕ̄) for constant configurations of (ϕ, ϕ̄) .
A straightforward computation gives

Veff(ϕ, ϕ̄) = ϕ̄ϕ

ξg2
+ i

∫
d4k

(2π)4
ln((−k2)2 + ϕ̄ϕ). (3.14)

3 This property follows from the Hermiticity properties of the ghost and antighost fields, chosen here as in [21].
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Table 1. Ghost number and canonical dimension of the fields.

Field Aa
µ Aµ ca c c̄a ba ϕ ϕ̄

Ghost number 0 0 1 1 −1 0 2 −2
Dimension 1 1 1 1 1 2 2 2

Using the dimensional regularization and adopting the renormalization condition at arbitrary
scale M

∂2Veff

∂ϕ̄∂ϕ

∣∣∣∣
ϕ̄ϕ=M4

= 1

ξg2
(3.15)

the renormalized effective potential is found to be

Veff(ϕ, ϕ̄) = ϕ̄ϕ

(
1

ξg2
+

1

32π2

(
ln

ϕ̄ϕ

M4
− 2

))
. (3.16)

The minimization of Veff yields the condition

ln
ϕ̄ϕ

M4
= 1 − 32π2

ξg2
(3.17)

which gives the nontrivial vacuum configuration

ϕ̄ ≡ v̄ = β̄M2 exp

(
1

2
− 16π2

ξg2

)
ϕ ≡ v = βM2 exp

(
1

2
− 16π2

ξg2

)
(3.18)

where β and β̄ are dimensionless constants with ghost number (2,−2), obeying the constraint
ββ̄ = 1. Of course, their introduction accounts for (ϕ, ϕ̄) being Faddeev–Popov charged.
From equation (3.12) one sees that the nonvanishing expectation value of (ϕ, ϕ̄) leads to the
existence of the ghost condensates 〈εabcacb〉 and 〈εabc̄a c̄b〉.

In order to analyse the consequences following from the nontrivial ground state
configuration (3.18) let us look at the ghost propagators in the condensed vacuum. They
are easily computed and read

〈ca(p)cb(−p)〉 = i
vεab

(p2)2 + v̄v
〈c̄a(p)c̄b(−p)〉 = −i

v̄εab

(p2)2 + v̄v
(3.19)

〈c̄a(p)cb(−p)〉 = i
p2δab

(p2)2 + v̄v
.

One sees thus that, due to the existence of the condensates 〈εabcacb〉 and 〈εabc̄a c̄b〉, the
propagators (3.19) become regular in the low energy region, the infrared cutoff being given
by v̄v. Moreover, from expressions (3.19) , it follows that another condensate 〈c̄aca〉 of ghost
number zero is nonvanishing, namely

〈c̄aca〉 = − (v̄v)1/2

16π
. (3.20)

We remark the absence in the propagator 〈c̄a(p)cb(−p)〉 of a term containing the antisymmetric
tensor εab, forbidding the presence of the condensate 〈εabcac̄b〉. Note also that all
ghost condensates 〈εabcacb〉, 〈εabc̄a c̄b〉 and 〈c̄aca〉 are invariant under the residual U(1)

transformations, meaning that the corresponding Ward identity (2.10) remains unbroken.
Let us now turn to analyse the stability within the perturbative framework of the vacuum

solution (3.18). Consistency with the one-loop computation requires that the vacuum
configuration (3.18) is a solution of the gap equation (3.17) at arbitrary small coupling g,
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ensuring that the logarithmic contributions for the effective potential are small and therefore
compatible with the perturbative expansion [22]. This condition will fix the order of magnitude
of (v̄v). In order to solve equation (3.17) at small coupling we introduce the renormalization
group invariant QCD scale parameter 	QCD,

	2
QCD = M2 exp

(
−16π2

β0g2

)
(3.21)

where β0 is the one-loop coefficient of the β-function of pure Yang–Mills

β(g) = −β0
g3

16π2
+ O(g5) β0 = 11

3
N for SU(N). (3.22)

Inserting (3.21) in the gap equation (3.17) one gets

ln
ϕ̄ϕ

	4
QCD

= 32π2

g2

(
1

β0
− 1

ξ

)
+ 1. (3.23)

Therefore, according to [6–8], the existence of a solution at arbitrary small coupling is ensured
by choosing for the gauge parameter ξ , the value

ξ = β0 = 22
3 . (3.24)

It is worth mentioning here that, as shown in [6–8], the one-loop anomalous dimensions
γϕ, γϕ̄ of the auxiliary fields ϕ̄, ϕ turn out to vanish when the value of ξ is precisely that of
equation (3.24). In turn, this ensures that the one-loop effective potential (3.16) obeys the
renormalization group equations. Also, as a consequence of equation (3.24), the breaking
(v̄v)1/2 turns out to be of the order of 	2

QCD. Concerning the symmetry breaking aspects
related to the existence of the ghost condensates 〈εabcacb〉, 〈εabc̄a c̄b〉, it is apparent that a
nonvanishing expectation value for the Faddeev–Popov charged auxiliary fields ϕ and ϕ̄ leads
to a breaking of the ghost number. Let us proceed now with the generalization to the case of
SU(N).

4. Generalization to SU (N )

In order to generalize the previous mechanism to SU(N) we introduce a set of real Faddeev–
Popov charged auxiliary fields ϕ, ϕ̄ in the adjoint representation, namely

ϕ̄ = ϕ̄AT A = ϕ̄aT a + ϕ̄iT i ϕ = ϕAT A = ϕaT a + ϕiT i (4.25)

where the indices a and i run over the off-diagonal and diagonal generators, respectively. The
pure off-diagonal ghost terms of the gauge fixing (2.8) can be rewritten as

Soff
MAG =

∫
d4x

(
c̄a∂2ca − 1

ξg2
ϕiϕ̄i +

1

2
ϕif abi c̄a c̄b − 1

2
ϕ̄if abicacb

− 1

ξg2
ϕ̄aϕa +

1

2
√

2
ϕaf abcc̄bc̄c − 1

2
√

2
ϕ̄af abccbcc

)
. (4.26)

With the introduction of the auxiliary fields ϕi, ϕ̄i, ϕ̄a, ϕa the Ward identity (2.10) generalizes
to

W iS = −∂2bi (4.27)

where

W i = ∂µ

δ

δAi
µ

+ gf abi

(
Aa

µ

δ

δAb
µ

+ ca δ

δcb
+ ba δ

δbb
+ c̄a δ

δc̄b
+ ϕa δ

δϕb
+ ϕ̄a δ

δϕ̄b

)
. (4.28)
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According to this identity, only the U(1)N−1-invariant diagonal fields ϕi, ϕ̄i may acquire a
nonvanishing vacuum expectation value. As before, let us look at the one-loop effective
potential, which in the present case reads

Veff(ϕ
i, ϕ̄i) = ϕ̄iϕi

ξg2
+

i

2
ln detMab (4.29)

where Mab denotes the (2N(N − 1)) × (2N(N − 1)) matrix

Mab =
(

f abiϕi δab∂2

−δab∂2 −f abi ϕ̄i

)
. (4.30)

In the case of SU(3), the Cartan subgroup has dimension 2, with ϕi = (ϕ3, ϕ8) and
ϕ̄i = (ϕ̄3, ϕ̄8). Making use of the explicit values of the structure constants, the effective
potential (4.29) is found to be

Veff(ϕ
i, ϕ̄i) = ϕ̄iϕi

ξg2
+ i

3∑
α=1

∫
d4k

(2π)4
ln

(
(−k2)2 +

(
εi
αϕ̄

i
)(

εj
αϕ

j
))

(4.31)

where εα are the root vectors of SU(3), given by ε1 = (1, 0), ε2 = (−1/2,−√
3/2) and

ε3 = (−1/2,
√

3/2). We observe that expression (4.29), although obtained in a different way,
is very similar to that of [8]. The effective potential (4.29) turns out to possess global minima
along the directions of the roots, given by the following configurations

(
ϕ3

α, ϕ̄
3
α, ϕ8

α, ϕ̄
8
α

)
,

ϕ3
1 = 21/3βM2 exp

(
1

2
− 32π2

3ξg2

)
ϕ̄3

1 = 21/3β̄M2 exp

(
1

2
− 32π2

3ξg2

)
(4.32)

ϕ8
1 = ϕ̄8

1 = 0

ϕ3
2 = 4−1/3βM2 exp

(
1

2
− 32π2

3ξg2

)
ϕ̄3

2 = 4−1/3β̄M2 exp

(
1

2
− 32π2

3ξg2

)
(4.33)

ϕ8
2 =

√
3ϕ3

2 ϕ̄8
2 =

√
3ϕ̄3

2

and

ϕ3
3 = 4−1/3βM2 exp

(
1

2
− 32π2

3ξg2

)
ϕ̄3

3 = 4−1/3β̄M2 exp

(
1

2
− 32π2

3ξg2

)
(4.34)

ϕ8
3 = −

√
3ϕ3

3 ϕ̄8
3 = −

√
3ϕ̄3

3

with M2 being the renormalization scale and ββ̄ = 1 . Expression (4.31) takes the same value
for all minima. As in the previous case of SU(2), from the requirement that the nontrivial
vacuum configurations (4.32)–(4.34) are solutions of the gap equation at weak coupling, for ξ

one obtains the value

ξ = 2β0

3
= 22

3
. (4.35)

It is worth underlining that the value obtained for ξ is precisely the same as in the case of
SU(2).

5. Conclusion

The existence of the off-diagonal ghost condensates 〈cc〉 and 〈c̄c̄〉 of dimension 2 in the MAG
has been discussed. These condensates rely on the nonlinearity of the MAG gauge fixing
condition, which requires the introduction of a quartic ghost self-interaction term, needed for
the renormalizability of the model. For positive values of the gauge parameter ξ the quartic



7218 V E R Lemes et al

self-interaction is attractive, favouring the formation of ghost condensates, which show up as
nontrivial solutions of the gap equation for the effective potential.

A further important point is that the gauge parameter ξ can be chosen to ensure that
the condensed vacuum configuration is a solution of the gap equation at weak coupling, i.e.
for small values of the gauge coupling constant g. The whole framework is thus consistent
with the perturbative loop expansion. In particular, for ξ one obtains the value 22/3, for
both SU(2) and SU(3). Although we cannot extend the validity of this mechanism to the
strong coupling region, i.e. to energy scales below 	QCD, it can be interpreted, to some extent,
as possible evidence for the Abelian dominance. It is indeed worth recalling that the off-
diagonal condensate 〈c̄c〉 is part of the more general condensate

(
1
2

〈
Aa

µAµa
〉−ξ〈c̄aca〉), which

is expected to provide effective masses for all off-diagonal fields [15–17].
In this work, the ghost condensation has been related to the dynamical breaking of the

ghost number symmetry, which is present in Yang–Mills theory with arbitrary gauge group.
It is useful to recall that the ghost number generator δFP is part of SL(2, R), which is present
in the MAG for any gauge group SU(N) [18].

Aspects concerning the Goldstone boson associated with this breaking as well as the
characterization of the condensate

(
1
2

〈
Aa

µAµa
〉 − ξ〈c̄aca〉) are under investigation. We remark

that this massless excitation should be identified with a bound state of ghosts. This follows
by noting that, classically, the auxiliary fields ϕi and ϕ̄i correspond to the ghost composite
operators f iabcacb and f iabc̄a c̄b. This massless excitation is expected to decouple from the
physical spectrum. In fact, in the case of SU(2), a decoupling argument based on the quartet
mechanism [21] has been given for the Goldstone boson related to the breaking of SL(2, R)

[6, 7].
Let us conclude with some general comments on the result so far obtained. Certainly, many

aspects of the ghost condensation remain to be analysed, deserving a deeper understanding.
Until now, the ghost condensates have been investigated at one-loop order and in the weak
coupling regime, where a nontrivial vacuum seems to emerge. However, a complete analysis
should include a better understanding (at least qualitatively) of the strong coupling. This would
require facing genuine nonperturbative effects, such as Gribov’s ambiguities, which are also
present in the maximal Abelian gauge [23]. Here, the employment of the Schwinger–Dyson
equations [24] could provide more information about the role of the ghost condensates for the
infrared region of Yang–Mills theories.

Also, a two-loop analysis of the effective potential could improve our understanding
of the weak coupling regime and of the relationship (3.24) between the β-function and the
gauge parameter ξ . The combined use of the local composite operators technique [2] and
the algebraic renormalization [25] proves to be particularly useful for this kind of analysis,
as done in the case of the gluon–ghost condensate

〈
1
2A2 − ξ c̄c

〉
in the covariant nonlinear

Curci–Ferrari gauge [26].
It is worth mentioning that by now evidence for the ghost condensation has been reported

in other gauges, namely in the Curci–Ferrari gauge [27–29] and in the Landau gauge [30].
All these gauges, including the maximal Abelian gauge, possess a global SL(2, R) symmetry
[18], a feature which seems to be deeply related to the ghost condensation.

Other important aspects to be further analysed are those related to the BCS versus
Overhauser effect, i.e. to establish which is the preferred vacuum with the lowest energy.
Also, the role of the BRST symmetry in the presence of ghost condensation needs to be
clarified. We remark that these aspects have been recently investigated in detail in [31] in
the case of the Curci–Ferrari and Landau gauge. Here, it turns out that, due to the SL(2, R)

invariance of the effective potential,both the BCS and the Overhauser vacua can be consistently
chosen as vacuum state. Furthermore, the resulting theory perturbed around the condensed
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vacuum is found to be BRST invariant. A similar analysis is expected to apply in the maximal
Abelian gauge, leading essentially to the same conclusion.
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do Estado do Rio de Janeiro (Faperj) and the SR2-UERJ are acknowledged for the financial
support.

References

[1] Gubarev F V and Zakharov V I 2001 Phys. Lett. B 501 28
Gubarev F V, Stodolsky L and Zakharov V I 2001 Phys. Rev. Lett. 86 2220

[2] Verschelde H, Knecht K, Van Acoleyen K and Vanderkelen M 2001 Phys. Lett. B 516 307
[3] Boucaud Ph, Leroy J P, Le Yaouanc A, Micheli J, Pène O, De Soto F, Donini A, Moutarde H and Rodrı́guez-

Quintero J 2002 Phys. Rev. D 66 034504
Boucaud Ph, Le Yaouanc A, Leroy J P, Micheli J, Pène O and Rodrı́guez-Quintero J 2000 Phys. Lett. B 493 315

[4] Faddeev L and Niemi A J 2002 Phys. Lett. B 525 195
[5] Freyhult L 2002 Int. J. Mod. Phys. A 17 3681
[6] Schaden M 1999 Mass generation in continuum SU(2) gauge theory in covariant Abelian gauges Preprint

hep-th/9909011
Schaden M 2000 Mass generation, ghost condensation and broken symmetry: SU(2) in covariant Abelian

gauges Talk given at Confinement IV (Vienna, 2000) (Preprint hep-th/0108034)
[7] Schaden M 2000 SU(2) gauge theory in covariant (maximal) Abelian gauges Talk presented at Vth Workshop

on QCD (Villefranche, 2000) (Preprint hep-th/0003030)
[8] Kondo K-I and Shinohara T 2000 Phys. Lett. B 491 263
[9] ’t Hooft G 1981 Nucl. Phys. B 190 [FS3] 455

[10] Kronfeld A, Schierholz G and Wiese U-J 1987 Nucl. Phys. B 293 461
Kronfeld A, Laursen M, Schierholz G and Wiese U-J 1987 Phys. Lett. B 198 516

[11] Nambu Y 1974 Phys. Rev. D 10 4262
’t Hooft G 1975 High Energy Physics EPS Int. Conference (Palermo) ed A Zichichi
Mandelstam S 1976 Phys. Rep. 23 245

[12] Min H, Lee T and Pac P Y 1985 Phys. Rev. D 32 440
[13] Fazio A R, Lemes V E R, Sarandy M S and Sorella S P 2001 Phys. Rev. D 64 085003
[14] Nambu Y and Jona-Lasinio G 1961 Phys. Rev. 122 345
[15] Kondo K-I 2001 Phys. Lett. B 514 335

Kondo K-I, Murakami T, Shinohara T and Imai T 2002 Phys. Rev. D 65 085034
[16] Dudal D, Van Acoleyen K and Verschelde H 2002 Dynamical mass generation in quantum field theory: some

methods with application to the Gross–Neveu model and Yang–Mills theory Preprint hep-th/0204216
Dudal D, Van Acoleyen K and Verschelde H 2002 Proc. NATO Advanced Research Workshop on ‘Confinement,

Topology, and other Non-Perturbative Aspects of QCD’ (Stara Lesna, Slovakia, 21–27 Jan. 2002)
[17] Dudal D and Verschelde H 2000 On ghost condensation, mass generation and Abelian dominance in the maximal

Abelian gauge Preprint hep-th/0209025
[18] Dudal D, Lemes V E R, Picariello M, Sarandy M S, Sorella S P and Verschelde H 2002 J. High Energy Phys.

JHEP12(2002)008
[19] Ojima I 1982 Z. Phys. C 13 173
[20] Park B-Y, Rho M, Wirzba A and Zahed I 2000 Phys. Rev. D 62 034015
[21] Kugo T and Ojima I 1978 Phys. Lett. B 73 459 Prog. Theor. Phys. 66 (1979) 1

Nakanishi N and Ojima I 1990 Covariant Operator Formalism of Gauge Theories and Quantum Gravity (Lecture
Notes in Physics vol 27) (Singapore: World Scientific)

[22] Coleman S and Weinberg E 1973 Phys. Rev. D 7 1888
[23] Bruckmann F, Heinzl T, Wipf A and Tok T 2000 Nucl. Phys. B 584 589
[24] Alkofer R and von Smekal L 2001 Phys. Rep. 353 281
[25] Piguet O and Sorella S P 1995 Algebraic Renormalization (Monograph Series m28) (Berlin: Springer)



7220 V E R Lemes et al

[26] Dudal D, Verschelde H, Lemes V E R, Sarandy M S, Sorella S P and Picariello M 2003 Gluon-ghost condensate
of mass dimension 2 in the Curci–Ferrari gauge Preprint hep-th/0302168

[27] Kondo K-I 2001 Preprint hep-th/0103141
[28] Lemes V E R, Sarandy M S, Sorella S P, Picariello M and Fazio A R 2003 Mod. Phys. Lett. A 18 711
[29] Sawayanagi H 2003 Phys. Rev. D 67 045002
[30] Lemes V E R, Sarandy M S and Sorella S P 2002 Preprint hep-th/0210077 (Ann. Phys., NY at press)
[31] Dudal D, Verschelde H, Lemes V E R, Sarandy M S, Sorella S P, Picariello M and Vicini A 2003 More

on ghost condensation in Yang–Mills theory: BCS versus Overhauser effect and the breakdown of the
Nakanishi–Ojima annex SL(2,R) symmetry Preprint hep-th/0305020


